Open the TI-Nspire document Comparing_Linear_and_Exponential_Functions.tns.	1.1 1.2 2.1 ► Comparingons Comparing Linear and Exponential Functions
In this activity, you will explore the values of the expressions $3x$ and 3^x as <i>x</i> changes from 0 to 5. You will compare the two expressions by investigating patterns in how their values change both in a table and graphically.	Grab the point and drag it to change the value of x and follow the directions on the student activity page.

Move to page 1.2.

Press	ctrl) and	ctrl	∢ to	

navigate through the lesson.

1. Grab and drag the point to change the value of *x*. Complete the table below. Which column is growing faster?

x	3 <i>x</i>	3 [×]
0		
1		
2		
3		
4		
5		

- 2. a. As x increases from 2 to 3, how does the value of 3x change?
 - b. As *x* increases by 1, describe the pattern in the numbers in the 3*x* column of the table.
 - c. As x increases from 2 to 3, how does the value of 3^x change?
 - d. As *x* increases from 3 to 4, how does the value of 3^{*x*} change?
 - e. As x increases by 1, describe the pattern in the numbers in the 3^x column of the table.

- 3. On page 1.2 you can only look at values of x from 0 to 5. If x = 6, what would be the values of 3x and 3^{x} ? How did you determine the values for 3x and 3^{x} ?
- 4. Why are the values for 3^x increasing faster than the values for 3x?

5. The function $f(x) = 3^x$ is called an **exponential function**, while the function f(x) = 3x is a **linear** *function*. Describe the differences in the two functions.

Move to page 2.1.

- 6. Drag the point to the right to produce two graphs—one solid, one dashed. Use the information from the table in question 1 to identify which graph represents an exponential function and which graph represents a linear function. Justify your answer.
- 7. How do the graphs of f(x) = 3x and $f(x) = 3^x$ support your response to question 4?
- 8. Aaron says that the values of $f(x) = 5^x$ will increase faster than the values of the linear function f(x) = 5x. Do you agree or disagree? Justify your answer.