Name	
Class	

A ratio uses division to compare two quantities.

A <u>proportion</u> is an equation that states that two ratios are equivalent.

In this activity, you will explore two different ways to compare similar triangles.

Problem 1 – Ratios of corresponding sides

On page 1.4, two triangles are shown. $\triangle A$ is similar to $\triangle B$.

Find the lengths of the sides using the **Length** tool. Then use the **Calculate** tool to find the ratios shown on the page.

A_1A_2	A_2A_3	A_1A_3
$\overline{B_1B_2}$	$\overline{B_2 B_3}$	B_1B_3

1. What do you notice about the values of the ratios?

2. Use the up and down arrows at the top of the page to change the size of ΔB . What do you notice about the ratios?

3. Move points A_1 , A_2 , or A_3 . What do you notice about the ratios?

4. Write a proportion comparing the lengths of corresponding sides. (Use the ratios found on page 1.4).

Ratios of Similar Triangles

Problem 2 – Ratios of two sides of a triangle

On page 2.2, two triangles are shown. $\triangle A$ is similar to $\triangle B$.

Find the lengths of the sides using the **Length** tool. Then use the **Calculate** tool to find the ratios shown on the page.

$\frac{A_1A_2}{A_2A_3}$	$\frac{A_2A_3}{A_1A_3}$	$\frac{A_1A_3}{A_1A_2}$
$\frac{B_1B_2}{B_2B_3}$	$\frac{B_2B_3}{B_1B_3}$	$\frac{B_1B_3}{B_1B_2}$

5. What do you notice about the ratios?

6. Use the up and down arrows at the top of the page to change ΔB . What do you notice about the ratios?

7. Move points A_1 , A_2 , or A_3 . What do you notice about the ratios?

8. Write proportions using the ratios (in letter form) from page 2.2.