\qquad
\qquad

A ratio uses division to compare two quantities.
A proportion is an equation that states that two ratios are equivalent.
In this activity, you will explore two different ways to compare similar triangles.

Problem 1 - Ratios of corresponding sides

On page 1.4 , two triangles are shown. $\Delta \boldsymbol{A}$ is similar to $\Delta \boldsymbol{B}$.
Find the lengths of the sides using the Length tool. Then use the Calculate tool to find the ratios shown on the page.

$$
\frac{A_{1} A_{2}}{B_{1} B_{2}} \quad \frac{A_{2} A_{3}}{B_{2} B_{3}} \quad \frac{A_{1} A_{3}}{B_{1} B_{3}}
$$

1. What do you notice about the values of the ratios?
2. Use the up and down arrows at the top of the page to change the size of $\Delta \boldsymbol{B}$. What do you notice about the ratios?
3. Move points A_{1}, A_{2}, or A_{3}. What do you notice about the ratios?
4. Write a proportion comparing the lengths of corresponding sides. (Use the ratios found on page 1.4).

Ratios of Similar Triangles

Problem 2 - Ratios of two sides of a triangle

On page 2.2, two triangles are shown. $\Delta \boldsymbol{A}$ is similar to $\Delta \boldsymbol{B}$.
Find the lengths of the sides using the Length tool. Then use the Calculate tool to find the ratios shown on the page.
$\frac{A_{1} A_{2}}{A_{2} A_{3}}$
$\frac{A_{2} A_{3}}{A_{1} A_{3}}$
$\frac{A_{1} A_{3}}{A_{1} A_{2}}$
$\frac{B_{1} B_{2}}{B_{2} B_{3}}$
$\frac{B_{2} B_{3}}{B_{1} B_{3}}$
$\frac{B_{1} B_{3}}{B_{1} B_{2}}$
5. What do you notice about the ratios?
6. Use the up and down arrows at the top of the page to change $\triangle \boldsymbol{B}$. What do you notice about the ratios?
7. Move points A_{1}, A_{2}, or A_{3}. What do you notice about the ratios?
8. Write proportions using the ratios (in letter form) from page 2.2.

