Open the TI-Nspire document *Area_Function_Problems.tns*.

Objective: To extend the understanding of the relationship between the area under a derivative curve and the antiderivative function.

Directions: For each problem, drag the empty circle on the x-axis and watch point P move across the graph. Next, move to page 2 of the problem and use $\mathbf{f}2(x)$ to type the function you think point P is modeling. Determine if your function matches the scatter plot of the area function.

	AD 📗	×
CALCULUS		î
	_	ı
Area Function Problems		ı
In this lesson, students will see a point th		ı
represents (x, area under a curve). Stud can predict what equation represents the		ı
area function and confirm their prediction		ı
a scatter plot of the graph.		ľ
		•

Move to page 2.1.

Record your antiderivative function for each problem.

Problem 2:

Problem 3:

Problem 4:

Problem 5:

Problem 6:

Problem 7:

Problem 8:

Use the results from the activity to answer the questions.

- 1. What is the antiderivative function of f(x) = -2?
- 2. What is the antiderivative function of f(x) = k?
- 3. What is the antiderivative function of f(x) = mx + b?
- 4. What is the difference between the antiderivative function of problem 4 and that of problem 6?
- 5. Why is the area negative when the left endpoint is in the first quadrant?
- 6. When does moving the left endpoint further to the left make the total area positive?
- 7. What is the difference between the antiderivative function of problem 6 and that of problem 8?