\qquad
\qquad

In this activity, you will:

- Solve systems of equations by writing the augmented matrices in reduced row-echelon form

Use this document as a reference and to record your
 answers.

Problem 1 - Augmented matrices and reduced row-echelon form

You have already learned how to solve systems of equations such as

$$
\begin{aligned}
& 2 x+3 y=5 \\
& 5 x-4 y=-22
\end{aligned}
$$

the one to the right by graphing and using elimination and substitution.

But what about larger systems like this one?
Surely you could solve this system by elimination, but what if the system had six equations in six unknowns?

$$
\begin{aligned}
& x-2 y+3 z=9 \\
& -x+3 y=-4 \\
& 2 x-5 y+5 z=17
\end{aligned}
$$

We'll explore how to solve larger systems by first solving the 2×2 system. The first step is to write an augmented matrix.
In an augmented matrix, each row represents an equation of the system (omitting the variables). Each column represents the coefficients of a specific variable, with the last column being the constant terms.

- Write the augmented matrix for the system $\left\{\begin{array}{l}2 x+3 y=5 \\ 5 x-4 y=-22\end{array}\right.$ below.

Define this to be matrix A. To do this press $2 n d \sqrt{x-1}$ and arrow to EDIT. Select matrix [A], change the numbers in the top right of the screen to 2×3, and then enter the numbers of the matrix.

Now you will use elementary row operations to reduce the
 matrix in a manner similar to using elimination.

Reduce It!

Elementary row operations performed on an augmented matrix yield an augmented matrix of an equivalent system.

The elementary row operations are:

- interchange any two rows
- multiply a row by a nonzero constant
- add a multiple of a row to another row

The goal of using these elementary row operations on an augmented matrix is to rewrite the matrix in its equivalent, reduced row-echelon form.

A matrix is in reduced row-echelon form if all of the following hold:

- All zero rows (if any) are at the bottom.
- The first nonzero entry in any nonzero row is a 1 (called a leading 1).
- Columns containing a leading 1 have zeros for all other entries.
- Each leading 1 appears to the right of leading 1 s in rows above it.
- Use elementary row operations as described below to write matrix A in reduced row-echelon form.

a. $\frac{1}{2} r_{1} \rightarrow r_{1}$

b. $-5 r_{1}+r_{2} \rightarrow r_{2}$

c. $-\frac{2}{23} r_{2} \rightarrow r_{2}$

You can check your answer using the rref command, which returns the reduced row-echelon form for a given matrix.

- Use this command on matrix A.

To perform elementary row operations on your calculator, use the following commands from the Matrix > MATH menu. The arguments are given in parentheses.
rowSwap(matrix, row\#, row\#)
*row(value, matrix, row\#)
*row+(value, matrix, row\#, row\#)
Note: When you are performing subsequent row operations, use Ans as the matrix.)
d. $-\frac{3}{2} r_{2}+r_{1} \rightarrow r_{1}$

Reduce It!

From the reduced row-echelon form, you can easily extract the solution to the system. Since the first column represents the coefficients of x and the second column the coefficients of y, this new equivalent system is simply $x=-2$ and $y=3$, which is the solution to our system.

- What would the reduced row-echelon form of an augmented matrix for a system with infinitely many solutions look like?
- for a system with no solutions?

Problem 2 - A 3×3 system

The rref command is very helpful when solving larger systems, but you should still know how to reduce augmented matrices yourself.

- Try it with the 3×3 system shown to the right. Define the augmented matrix as [A], and use the calculator to perform the elementary row operations. Check your answer using the rref command.

$$
\begin{aligned}
& x-2 y+3 z=9 \\
& -x+3 y=-4 \\
& 2 x-5 y+5 z=17
\end{aligned}
$$

Solution to system

$$
\begin{aligned}
& x= \\
& y= \\
& z=
\end{aligned}
$$

Problem 3 - Larger systems

- For this 4×4 system, write the augmented matrix and solve using the rref command.

$$
\begin{aligned}
& w-2 x+2 y+z=1 \\
& 3 w-5 x+6 y+3 z=-1 \\
& -2 w+4 x-3 y-2 z=5 \\
& 3 w-5 x+y+4 z=-3
\end{aligned}
$$

Solution to system

$$
\begin{aligned}
& w= \\
& x= \\
& y= \\
& z=
\end{aligned}
$$

Problem 4 - Curve fitting

Use this method to find an equation of the form $y=a x^{3}+b x^{2}+c x+d$ that passes through the points $(-2,-37),(-1,-11),(0,-5)$, and $(2,19)$.

First, we need to generate a system of equations.
Substitute the first point for (x, y). This results in:

$$
-37=a(-2)^{3}+b(-2)^{2}+c(-2)+d \rightarrow-8 a+4 b-2 c+d=-37
$$

Do the same for each of the three remaining points and record the resulting system of equations. Then solve using the rref command.

System of equations:

Solution to system

$a=$ \qquad
$b=$ \qquad
$c=$ \qquad
$d=$ \qquad

- What is the equation?

Exercises

Solve each system.

1. $x-3 y+z=1$
$2 x-y-2 z=2$
$x+2 y-3 z=-1$
2. $2 x+4 y+z=1$
$x-2 y-3 z=2$
$x+y-z=-1$
3. $x+2 y-7 z=-4$
$2 x+y+z=13$
$3 x+9 y-36 z=-33$
4. The height of an object thrown into the air is determined by the equation
$h=\frac{1}{2} a t^{2}+v_{0} t+s_{0}$ where a is the acceleration due to gravity, v_{0} is the initial vertical velocity, t is the time in seconds, and s_{0} is the initial height.

Using the following (time, height) data to determine a, v_{0}, and s_{0} for this equation.
$(1,48),(2,64),(3,48)$

