Zeros of a Quadratic Function

Student Activity
\qquad

Open the TI-Nspire document
Zeros_of_a_Quadratic_Function.tns.

In this activity, you will observe graphs of pairs of linear functions and the related quadratic function. You will investigate the points at which the functions cross the x-axis and the zeros of the functions.

Press ctril and ctril to navigate through the lesson.

1. Use the sliders to set $y_{1}=2 x+2$ and $y_{2}=1 x-2$. Observe that the graph of $y_{1}=2 x+2$ appears to cross the x-axis at $x=-1$. When $x=-1, y_{1}=0$ because $2(-1)+2=0$.
$x=-1$ is called a zero of the function $y_{1}=2 x+2$.
a. Where does the graph of $y_{2}=1 x-2$ appear to cross the x-axis?
b. Verify that this value of x is a zero of y_{2}.
2. a. When $y_{1}=2 x+2$ and $y_{2}=1 x-2$, what is the function y_{3} ?
b. How many times does the graph of $y_{3}=2 x^{2}-2 x-4$ cross the x-axis?
c. What are the zeros of y_{3} ?
d. Write a conjecture about the relationship between the zeros of the linear functions and the zeros of the quadratic function.
3. a. Given the information below, use the sliders of the .tns document to fill in the rest of the table.

$\boldsymbol{y}_{\mathbf{1}}$	$\boldsymbol{y}_{\mathbf{2}}$	Zeros of			
	$\boldsymbol{y}_{\mathbf{2}}$	$\boldsymbol{y}_{\mathbf{3}}$	Zeros of \boldsymbol{y}_{3}		
$2 x+4$	$x-1$				
$3 x+3$			-4		
					-5 and 4
				$x^{2}-2 x-15$	

b. What is the relationship between the zeros of the quadratic function and the zeros of the linear functions? Compare this to the conjecture you made in question 2d.
\qquad
4. Factor each of the quadratic functions below.
a. $2 x^{2}+2 x-4$
b. $3 x^{2}+15 x+12$
c. $x^{2}+x-20$
d. $x^{2}-2 x-15$
5. How do the factors in question 4 relate to the information in the table in question 3 ?
6. Write a pair of linear functions whose product yields a quadratic function with zeros of 3 and -2 . What is the corresponding quadratic function? Describe the process you used to determine your answers.
7. Given the quadratic function $y=x^{2}-11 x+30$, determine its zeros. Describe the process you used to obtain your solutions.
8. Samuel says, "I can solve $x^{2}-11 x+30=0$ by factoring it, setting each factor equal to zero, and solving for x." Is this a valid method? Explain.

